Asymptotic Analysis of Peristaltic Hydromagnetic Flow of Carreau Fluid in a Curved Channel
DOI:
https://doi.org/10.58341/srj.v1i1.2Abstract
The boundary layer peristaltic hydromagnetic flow of Carreau fluid in a curved type has been investigated in this article. Carreau fluid model is a generalized Newtonian fluid model having four parameters namely, infinite-shear-rate viscosity (μ∞), zero-shear-rate viscosity (μ0), relaxation time constant (Γ) and power-law index (n). The governing equations of the flow is obtained under long wavelength and low Reynolds number assumptions. An asymptotic solution to this problem is obtained when the strength of the applied magnetic field is large. It is observed the that asymptotic solution is independent of Weissenberg number. The asymptotic solution is also validated against numerical solution obtained via finite difference method.
Keywords:
Carreau fluid, Peristalsis, Boundary layer flow, Asymptotic solutionsReferences
Abbasi, F. M., Hayat, T., & Alsaedi, A. (2015). Numerical analysis for MHD peristaltic transport of Carreau–Yasuda fluid in a curved channel with Hall effects. Journal of Magnetism and Magnetic Materials, 382, 104-110. https://doi.org/10.1016/j.jmmm.2015.01.040
Ali, N., & Hayat, T. (2007). Peristaltic motion of a Carreau fluid in an asymmetric channel. Applied Mathematics and Computation, 193(2), 535-552. https://doi.org/10.1016/j.amc.2007.04.010
Ali, N., Javid, K., Sajid, M., & Hayat, T. (2016). New concept about existence of Hartmann boundary layer in peristalsis through curved channel-asymptotic solution. Meccanica, 51(8), 1783-1795. https://doi.org/10.1007/s11012-015-0346-2
Asghar, S., Minhas, T., & Ali, A. (2014). Existence of a Hartmann layer in the peristalsis of Sisko fluid. Chinese Physics B, 23(5), 054702. https://doi.org/10.1088/1674-1056/23/5/054702
Hayat, T., & Ali, N. (2007). A mathematical description of peristaltic hydromagnetic flow in a tube. Applied mathematics and computation, 188(2), 1491-1502. https://doi.org/10.1016/j.amc.2006.11.035
Hayat, T., Afsar, A., & Ali, N. (2008). Peristaltic transport of a Johnson–Segalman fluid in an asymmetric channel. Mathematical and computer modelling, 47(3-4), 380-400. https://doi.org/10.1016/j.mcm.2007.04.012
Hayat, T., Nawaz, S., Alsaedi, A., & Rafiq, M. (2017). Influence of radial magnetic field on the peristaltic flow of Williamson fluid in a curved complaint walls channel. Results in physics, 7, 982-990. https://doi.org/10.1016/j.rinp.2017.02.022
Hayat, T., Noreen, S., & Alsaedi, A. (2012). Effect of an induced magnetic field on peristaltic flow of non-Newtonian fluid in a curved channel. Journal of Mechanics in Medicine and Biology, 12(03), 1250058. https://doi.org/10.1142/S0219519411004721
Hayat, T., Tanveer, A., Alsaadi, F., & Mousa, G. (2016). Impact of radial magnetic field on peristalsis in curved channel with convective boundary conditions. Journal of Magnetism and Magnetic Materials, 403, 47-59. https://doi.org/10.1016/j.jmmm.2015.11.078
Hayat, T., Wang, Y., Siddiqui, A. M., Hutter, K., & Asghar, S. (2002). Peristaltic transport of a third-order fluid in a circular cylindrical tube. Mathematical Models and Methods in Applied Sciences, 12(12), 1691-1706. https://doi.org/10.1142/S0218202502002288
Kalantari, A., Riasi, A., & Sadeghy, K. (2014). Peristaltic flow of giesekus fluids through curved channels: an approximate solution. Nihon Reoroji Gakkaishi, 42(1), 9-17. https://doi.org/10.1678/rheology.42.9
Kalantari, A., Sadeghy, K., & Sadeqi, S. (2013). Peristaltic flow of non-Newtonian fluids through curved channels: a numerical study. a a, 100, 2.
Narla, V. K., Prasad, K. M., & Ramanamurthy, J. V. (2013). Peristaltic motion of viscoelastic fluid with fractional second grade model in curved channels. Chinese Journal of Engineering, 2013, 1-7. http://dx.doi.org/10.1155/2013/582390
Ramanamurthy, J. V., Prasad, K. M., & Narla, V. K. (2013). Unsteady peristaltic transport in curved channels. Physics of Fluids, 25(9), 091903. https://doi.org/10.1063/1.4821355
Shehzad, S. A., Abbasi, F. M., Hayat, T., Alsaadi, F., & Mousa, G. (2015). Peristalsis in a curved channel with slip condition and radial magnetic field. International Journal of Heat and Mass Transfer, 91, 562-569. https://doi.org/10.1016/j.ijheatmasstransfer.2015.07.076
Taber, L. A., Zhang, J., & Perucchio, R. (2007). Computational model for the transition from peristaltic to pulsatile flow in the embryonic heart tube. Journal of Biomechanical Engineering, 129(3), 441-449. https://doi.org/10.1115/1.2721076
Tripathi, D., & Bég, O. A. (2014). A study on peristaltic flow of nanofluids: Application in drug delivery systems. International Journal of Heat and Mass Transfer, 70, 61-70. https://doi.org/10.1016/j.ijheatmasstransfer.2013.10.044
Tripathi, D., & Bég, O. A. (2014). Peristaltic propulsion of generalized Burgers’ fluids through a non-uniform porous medium: A study of chyme dynamics through the diseased intestine. Mathematical biosciences, 248, 67-77. https://doi.org/10.1016/j.mbs.2013.11.006
Wang, Y., Hayat, T., Ali, N., & Oberlack, M. (2008). Magnetohydrodynamic peristaltic motion of a Sisko fluid in a symmetric or asymmetric channel. Physica A: Statistical Mechanics and its Applications, 387(2-3), 347-362. https://doi.org/10.1016/j.physa.2007.10.020
Downloads
Published
How to Cite
License
Copyright (c) 2022 Siazga Research Journal

This work is licensed under a Creative Commons Attribution 4.0 International License.