Asymptotic Analysis of Peristaltic Hydromagnetic Flow of Carreau Fluid in a Curved Channel

Authors

  • Muhammad Rehan Khan International Islamic University Islamabad - Pakistan
  • Khuram Javid Northern University Nowshera - Pakistan
  • Muhammad Muddassar Javed Quruba University D I Khan - Pakistan

DOI:

https://doi.org/10.58341/srj.v1i1.2

Abstract

The boundary layer peristaltic hydromagnetic flow of Carreau fluid in a curved type has been investigated in this article. Carreau fluid model is a generalized Newtonian fluid model having four parameters namely, infinite-shear-rate viscosity (μ∞), zero-shear-rate viscosity (μ0), relaxation time constant (Γ) and power-law index (n). The governing equations of the flow is obtained under long wavelength and low Reynolds number assumptions. An asymptotic solution to this problem is obtained when the strength of the applied magnetic field is large. It is observed the that asymptotic solution is independent of Weissenberg number. The asymptotic solution is also validated against numerical solution obtained via finite difference method.

Keywords:

Carreau fluid, Peristalsis, Boundary layer flow, Asymptotic solutions

References

Abbasi, F. M., Hayat, T., & Alsaedi, A. (2015). Numerical analysis for MHD peristaltic transport of Carreau–Yasuda fluid in a curved channel with Hall effects. Journal of Magnetism and Magnetic Materials, 382, 104-110. https://doi.org/10.1016/j.jmmm.2015.01.040

Ali, N., & Hayat, T. (2007). Peristaltic motion of a Carreau fluid in an asymmetric channel. Applied Mathematics and Computation, 193(2), 535-552. https://doi.org/10.1016/j.amc.2007.04.010

Ali, N., Javid, K., Sajid, M., & Hayat, T. (2016). New concept about existence of Hartmann boundary layer in peristalsis through curved channel-asymptotic solution. Meccanica, 51(8), 1783-1795. https://doi.org/10.1007/s11012-015-0346-2

Asghar, S., Minhas, T., & Ali, A. (2014). Existence of a Hartmann layer in the peristalsis of Sisko fluid. Chinese Physics B, 23(5), 054702. https://doi.org/10.1088/1674-1056/23/5/054702

Hayat, T., & Ali, N. (2007). A mathematical description of peristaltic hydromagnetic flow in a tube. Applied mathematics and computation, 188(2), 1491-1502. https://doi.org/10.1016/j.amc.2006.11.035

Hayat, T., Afsar, A., & Ali, N. (2008). Peristaltic transport of a Johnson–Segalman fluid in an asymmetric channel. Mathematical and computer modelling, 47(3-4), 380-400. https://doi.org/10.1016/j.mcm.2007.04.012

Hayat, T., Nawaz, S., Alsaedi, A., & Rafiq, M. (2017). Influence of radial magnetic field on the peristaltic flow of Williamson fluid in a curved complaint walls channel. Results in physics, 7, 982-990. https://doi.org/10.1016/j.rinp.2017.02.022

Hayat, T., Noreen, S., & Alsaedi, A. (2012). Effect of an induced magnetic field on peristaltic flow of non-Newtonian fluid in a curved channel. Journal of Mechanics in Medicine and Biology, 12(03), 1250058. https://doi.org/10.1142/S0219519411004721

Hayat, T., Tanveer, A., Alsaadi, F., & Mousa, G. (2016). Impact of radial magnetic field on peristalsis in curved channel with convective boundary conditions. Journal of Magnetism and Magnetic Materials, 403, 47-59. https://doi.org/10.1016/j.jmmm.2015.11.078

Hayat, T., Wang, Y., Siddiqui, A. M., Hutter, K., & Asghar, S. (2002). Peristaltic transport of a third-order fluid in a circular cylindrical tube. Mathematical Models and Methods in Applied Sciences, 12(12), 1691-1706. https://doi.org/10.1142/S0218202502002288

Kalantari, A., Riasi, A., & Sadeghy, K. (2014). Peristaltic flow of giesekus fluids through curved channels: an approximate solution. Nihon Reoroji Gakkaishi, 42(1), 9-17. https://doi.org/10.1678/rheology.42.9

Kalantari, A., Sadeghy, K., & Sadeqi, S. (2013). Peristaltic flow of non-Newtonian fluids through curved channels: a numerical study. a a, 100, 2.

Narla, V. K., Prasad, K. M., & Ramanamurthy, J. V. (2013). Peristaltic motion of viscoelastic fluid with fractional second grade model in curved channels. Chinese Journal of Engineering, 2013, 1-7. http://dx.doi.org/10.1155/2013/582390

Ramanamurthy, J. V., Prasad, K. M., & Narla, V. K. (2013). Unsteady peristaltic transport in curved channels. Physics of Fluids, 25(9), 091903. https://doi.org/10.1063/1.4821355

Shehzad, S. A., Abbasi, F. M., Hayat, T., Alsaadi, F., & Mousa, G. (2015). Peristalsis in a curved channel with slip condition and radial magnetic field. International Journal of Heat and Mass Transfer, 91, 562-569. https://doi.org/10.1016/j.ijheatmasstransfer.2015.07.076

Taber, L. A., Zhang, J., & Perucchio, R. (2007). Computational model for the transition from peristaltic to pulsatile flow in the embryonic heart tube. Journal of Biomechanical Engineering, 129(3), 441-449. https://doi.org/10.1115/1.2721076

Tripathi, D., & Bég, O. A. (2014). A study on peristaltic flow of nanofluids: Application in drug delivery systems. International Journal of Heat and Mass Transfer, 70, 61-70. https://doi.org/10.1016/j.ijheatmasstransfer.2013.10.044

Tripathi, D., & Bég, O. A. (2014). Peristaltic propulsion of generalized Burgers’ fluids through a non-uniform porous medium: A study of chyme dynamics through the diseased intestine. Mathematical biosciences, 248, 67-77. https://doi.org/10.1016/j.mbs.2013.11.006

Wang, Y., Hayat, T., Ali, N., & Oberlack, M. (2008). Magnetohydrodynamic peristaltic motion of a Sisko fluid in a symmetric or asymmetric channel. Physica A: Statistical Mechanics and its Applications, 387(2-3), 347-362. https://doi.org/10.1016/j.physa.2007.10.020

Published

2022-10-31

How to Cite

Khan, M. R., Javid, K. ., & Javed, M. M. . (2022). Asymptotic Analysis of Peristaltic Hydromagnetic Flow of Carreau Fluid in a Curved Channel. Siazga Research Journal, 1(1), 28–42. https://doi.org/10.58341/srj.v1i1.2

Issue

Section

Articles

Categories